If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+15x+43=0
a = 1; b = 15; c = +43;
Δ = b2-4ac
Δ = 152-4·1·43
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{53}}{2*1}=\frac{-15-\sqrt{53}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{53}}{2*1}=\frac{-15+\sqrt{53}}{2} $
| -(1+5b)-3=14-8b | | -50=-10-10e | | (6x-2)+15=7x+6 | | -(u-6)=0 | | -16+5n=-7(-6+8n+3 | | x/2-3x/4+5x/6=15 | | -34=6-4c | | -6x+11=47 | | 2f=42 | | 4j=–5j−9 | | -3.1m-1.42=-12.5m+8.93-11m | | 8(-8x+3)=552 | | 1/3(6y-)=-2y-3 | | 6(5+k)=36 | | 5(-2a+2)=7(-a-9)-3a | | 4(y+8)+y=3(y+3)-2 | | 9y+7=10y | | (180-×)-x=32 | | 7x+16=7x-4 | | 3|z+1|=26 | | 3(a+3)=4a+12 | | c+11/12=11 | | X/2-(x+2)/7=3 | | 2^x^+^3=16 | | 4x-6=-8x+18 | | 2(g+8)=-4 | | 19-9k=-20-12k+6 | | 7=-2(5-3x) | | 2x2-8x=5x2+17=0 | | 17.43+1.6u=-u-8.57 | | (X+15)/2+2x+15=180 | | 6x=7x+11 |